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also clarify the strong Higgs mass dependence of the asymmetry reported in a companion
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1. Introduction

The possibility of generating the observed baryon asymmetry at the electroweak phase

transition dates back just over twenty years [2]. The Standard Model provides baryon

number violating processes as well as CP-violation and potentially departure from thermal

equilibrium. The task at hand is to discover a scenario in which these ingredients come

together and generate the correct amplitude of the baryon asymmetry.

Cold Electroweak Baryogenesis [3 – 5] was proposed as an alternative to Electroweak

Baryogenesis at a bubble wall in a first order phase transition. In the Minimal Stan-

dard Model such a transition is ruled out by bounds on the Higgs mass [6 – 8], and Cold

Electroweak Baryogenesis relies on an out-of-equilibrium symmetry breaking transition

triggered by the evolution of an inflaton field.

Inflation is supported by measurements of the CMB [9] and although the precise origin

of the accelerated expansion has not been confirmed, models based on a scalar field rolling

in a suitable potential can successfully reproduce observational signals. The energy scale

of inflation is constrained by observations, but is usually guided by expectations of physics

beyond the Standard Model. In Cold Electroweak Baryogenesis, we apply a minimal exten-

sion to the Standard Model, a single inflaton, and assume that the energy scale of inflation

is the Electroweak scale. Although this does not discard the possibility of further physics
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at higher energies, it allows for a self-contained description of baryogenesis. This because

a period of electroweak-scale inflation will reduce the impact from whatever came before.

In section 2 we will introduce the relevant details of Cold Electroweak Baryogene-

sis. Tachyonic preheating with varying quench times is studied in section 3, with no

CP-violation, where we observe the behaviour of CP-even observables. These results are

then used in section 4, where we add CP-violation and compare the full simulation results

to linear treatments based on the CP-even observables, as in [1]. We interpret the quench-

time and mass dependence in terms of the winding around zeros of the Higgs field. Our

conclusions are in section 5.

2. Cold Electroweak Baryogenesis

A number of conditions are to be met for Cold Electroweak Baryogenesis to be successful:

• A period of inflation has to take place that ends at sufficiently low energy, such that

the reheating temperature is well below the electroweak scale. Then baryon number

changing processes (sphaleron transitions) cannot wash out a previously generated

asymmetry. Such low scale inflation can be made to agree with observational con-

straints, with some allowance for parameter tuning [10, 5, 11].

• Baryon number violation has to be effective while the system is out of equilibrium.

The finite-temperature transition is a crossover rather than a phase transition in the

Minimal Standard Model, [6 – 8], and hence the system stays close to equilibrium.

The phase transition can however be first-order in supersymmetric models with an

enlarged Higgs sector (see for instance [12]).

We pursue here a different route. Out-of-equilibrium conditions can be introduced by

triggering electroweak symmetry breaking through a coupling of the Higgs field to a

rolling inflaton at or after the end of inflation. This results in a tachyonic instabiliy,

which in turn can result in change of baryon number [3 – 5, 13, 14, 1].

• Although the gauge fields come out of equilibrium, an asymmetry is only created

in the presence of CP-violation, the strength of which will determine the magnitude

of the baryon asymmetry. The quark sector of the Minimal Standard Model seems

unlikely to provide the required CP-violation [15 – 19]. The lepton sector has not

been studied in similar detail. Here, as in [14, 1], we use only a simple CP-violating

interaction composed of Higgs and gauge fields (see our companion paper [1] for more

comments on this).

A simple implementation of the scenario is obtained by adding effective CP violation

to the SU(2)-Higgs sector of the SM, with action (we use the metric (− + ++))

S = −
∫

d3x dt

[

1

2g2
Tr FµνFµν +(Dµφ)†Dµφ+ε+µ2

effφ†φ+λ(φ†φ)2+κφ†φTr Fµν F̃µν

]

,

– 2 –
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The effective mass µeff is supposed to depend on time, e.g. due to the coupling to an inflaton

field σ,

µ2
eff = µ2 − λσφσ2, (2.1)

with a potential to appropriately generate low-scale inflation. In ‘inverted hybrid inflation’

models [20, 5, 11], σ is very small during inflation as it rolls away from the origin. After

inflation has ended it becomes substantial such that µ2
eff flips sign when σ2 = µ2/λσφ.

Much later σ and φ settle near their vacuum values and the eigenmodes and eigenvalues of

the inflaton-Higgs mixing mass matrix determine the masses and other properties of the

ensuing spinless particles [11].

The speed of the transition may be characterized by

u =

√
2

m3
H

dµ2
eff

dt

∣

∣

∣

∣

∣

µ2
eff

=0

. (2.2)

where we used the Higgs mass to set the scale. In [11] we assumed that viable baryogenesis

would require a sufficiently fast quench |u| & 0.15. For very fast quenches, the system is

expected to be very much out-of-equilibrium, and in the limit of infinitely slow quenches,

the system should stay in equilibrium throughout the symmetry breaking transition. One

issue is to identify a transition between “fast” and “slow” transitions. This will allow us

to constrain λσφ and/or the shape of the inflaton potential around the time of symmetry

breaking. Note that in the particular implementation of [11], inflation ends long before

electroweak symmetry breaking, so that there is some freedom to tune the inflaton speed

to accommodate a fast quench.

Setting aside the inflaton and the shape of its potential, we model the effective mass

parameter by a linear form

µ2
eff(t) = µ2

(

1 − 2t
tQ

)

, 0 < t < tQ, (2.3)

µ2
eff(t) = −µ2, t > tQ. (2.4)

with tQ introduced as the quench time. In this model the Higgs v.e.v. and mass are given

by the usual formulas v2 = µ2/λ and m2
H = 2µ2, and ε = µ4/4λ is chosen to set the energy

density of the vacuum to zero. Furthermore

|u| =
1

µtQ
=

√
2

mHtQ
. (2.5)

For |u| = 0.15, we find mHtQ ≈ 9.

The baryon asymmetry now depends on three parameters

• The quench time tQ.

• The strength of CP-violation, encoded in the coefficient of the CP-violating term,

which we write in terms of a dimensionless δcp,

κ =
3 δcp

16π2m2
W

. (2.6)
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In [1] we found that the dependence on δcp is linear at least for δcp < 1. For example,

at mH = 2mW this leads to

nB

nγ
= −(0.32 ± 0.04) × 10−4 δcp. (2.7)

• The mass of the Higgs boson, written as
(

mH

mW

)2

=
8λ

g2
. (2.8)

In [1], the mass dependence was seen to be quite complicated in the case of an

instantaneous quench. We will confirm here, that the mass dependence is also present

with non-instantaneous quenches; even the sign of the baryon asymmetry depends

on mH .

Shortly after µ2
eff has turned negative, the occupation numbers of the fields grow (faster

than) exponentially with time. Initially, the non-linear terms in the equations of motion

are not very large and it is reasonable to estimate 〈φ†φ〉 using a Gaussian approximation.

The equation

φ̈ −∇2φ + µ2
effφ = 0, (2.9)

where

µ2
eff = −M3(t − tc), tc = tQ/2, M = (µtQ/2)−1/3µ, (2.10)

can be solved analytically, assuming the initial state at t = 0 to be the free-field vacuum

(see e.g. [21], for the instantaneous quench see [22]). Following the steps taken in [21], the

(Fourier transform of the) equal-time two-point function is found to be given by

〈φkφ†
k
〉 = |fk(t)|2, (2.11)

fk(t) = C1kBi(τ − k2/M2) + C2kAi(τ − k2/M2), τ = M(t − tc), (2.12)

C1k = − π√
2ωk

[Ai′(−ω2
k/M

2) + iωkAi(−ω2
k/M

2)], ωk =
√

µ2 + k2, (2.13)

C2k =
π√
2ωk

[Bi′(−ω2
k/M

2) + iωkBi(−ω2
k/M

2)]. (2.14)

Since the Airy functions behave for large z like Ai(z) ∝ e(−2/3)z3

, Bi(z) ∝ e(2/3)z3

, it

can be shown that occupation numbers of the unstable modes with k . M
√

τ grow very

rapidly once τ > 0, and a classical approximation can be made for τ & 2 [21]. In fact, since

quantum and classical evolution are identical in form, the classical evolution may already

be started at time zero (τ = −Mtc), which is what we do in the numerical simulations

(this is the analog of the “just the half” initial conditions in the case of the instantaneous

quench [22]).

An important point to make is that energy is not conserved during a mass quench of

the type (2.3), because µeff depends explicitly on time. Differentiating the Hamiltonian

corresponding to the action (2.1) and using the equations of motion one finds

dH

dt
=

∫

d3x
dµ2

eff

dt
φ†φ. (2.15)
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Hence during the linear quench there is a change in energy density

∆ρ(t) = −2µ2

tQ

∫ t

0
dt′ 〈φ†φ〉(t′) ≈ −2µ2

tQ
4

∫ t

0
dt′d3k|fk(t

′)|2, (2.16)

where we made the Gaussian approximation in the last step (4 is the number of real

components of the Higgs doublet). Evaluation of this analytic expression shows that the

depletion in energy can be substantial.1

In the case when the mass term comes from a coupling to an inflaton field (2.1), the

energy extracted from the gauge-Higgs system is transferred into inflaton energy. Had

we included the dynamics of the inflaton itself, this energy would not be lost but would

come back through additional reheating as the inflaton oscillates and eventually decays.

Including a dynamical inflaton does however complicate the system somewhat, since it

implies unknown parameters such as λσφ and other masses and couplings of a potential

V (σ, φ).

We shall use the approximation (2.3) in the present work to bypass the complications of

the additional degree of freedom, because it is easy to implement and solve analytically at

early times, and because it can represent a source of mass quenching other than a coupling

to an inflaton. We are therefore not bound to a specific model.

When calculating the final asymmetry, we will need to know the reheating tempera-

ture. For this we will assume a scenario with an inflaton coupled to the Higgs, in which the

kinetic energy-density of the inflaton is negligible compared to our starting value ε = µ2/4λ

(as found in [13]). We will then assume that all the initial energy becomes equipartitioned

between SM particles at a temperature Treh < mW . This would follow from energy con-

servation (neglecting the tiny Hubble expansion-rate compared to the equilibration time-

scale), with mσ & mW such that the inflaton, Higgs and W,Z particles decay into the SM

particles with masses smaller than mW . For example, for µ = 100 GeV, this would give

Treh ' 43 GeV.

3. No CP violation

In order to understand the underlying gauge and Higgs dynamics, it is useful to study the

evolution of various observables in absence of CP violation. The CP-violation can then, at

least at early times, be thought of as a small perturbation on this background.

The numerical implementation is identical to the one introduced in [14, 1]. In short, the

action (2.1) is discretised on a lattice, and the classical equations of motion solved in real

time. This is done for a CP-symmetric ensemble of initial conditions, reproducing the Higgs

field correlators of the vacuum state at t = 0, when the Higgs potential is V = ε + µ2φ†φ

in the Gaussian approximation. The initial gauge field is set by Aµ = 0 and we impose

1The divergence of the integral over momenta is taken care of by renormalization, which may be ap-

proximated by including only the unstable modes k < M
√

τ . The upper boundary of the integration over

time has to be before nonlinearities become important, which is typically before the end of the quench at

t = tQ, except for a very fast quench.
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the Gauss constraint on the gauge momenta for a given random Higgs field background.

Observables are averaged over the ensemble.

The observables of interest (in a periodic volume L3) are the Higgs field averaged over

the volume,

φ2 =
1

L3

∫

d3xφ†φ =
1

L3

∫

d3x
1

2
Tr Φ†Φ, Φ = (iτ2φ

∗, φ), (3.1)

the volume-averaged magnetic field,

B2 =
1

L3

∫

d3xTr FijFij , (3.2)

the distribution of Higgs winding number,

Nw =
1

24π2

∫

d3xεijkTr U † (∂iU) U † (∂jU) U † (∂kU) , U =
Φ

√

1
2Tr Φ†Φ

, (3.3)

the width of the Chern-Simons number distribution

∆cs(t) = 〈[Ncs(t) − Ncs(0)]
2〉, Ncs(t) − Ncs(0) =

∫ t

0
dt

∫

d3x
1

16π2
Tr Fµν F̃µν , (3.4)

and its time derivative, the Chern-Simons number diffusion rate or susceptibility,

Γ =
d∆(t)

dt
. (3.5)

In equilibrium, Γ is the sphaleron rate.

The dynamics of a tachyonic electroweak phase transition has been studied in some

detail in terms of these and related observables in [13, 23] (with an inflaton), in the limit

of an instantaneous quench in [14, 24, 1], and in terms of suitably defined particle numbers

in [25]. The above observables are all global quantities (integrals over space). Since Aµ = 0

initially, also Ncs(0) = 0.2 The Chern-Simons number and the winding number can be

changed by an integer through a “large” gauge transformation, but Ncs − Nw is gauge

invariant. Classical vacuum configurations have Ncs − Nw = 0, and are gauge equivalent

to Ncs = Nw = 0.

We now motivate the study of one other observable, the distribution of φ†φ over the

volume, in particular its magnitude near φ†φ = 0. The study in [24] concentrated on local

observables, such as Chern-Simons and winding-number densities, in an attempt to clarify

how CP violation causes an asymmetry in the final Chern-Simons number. It was observed

that the transition produced initially many centers with high winding-number density,

dubbed ‘half-knots’ since their winding number in small balls is roughly ±1/2. They can

only disappear or be created when the Higgs length
√

φ†φ becomes zero in their center.

This happens at early times because of the rapid growth of long distance modes, and then

the number of half-knots rapidly diminishes, but when the volume-averaged Higgs length

has grown substantially, φ2 = O(v2), such zeros have become rare. Subsequently the Higgs

2We recall that Ncs = −

R

d3x εjklTr Aj

`

Fkl + i 2

3
AkAl

´

/16π2.

– 6 –



J
H
E
P
0
1
(
2
0
0
7
)
0
3
4

0 20 40 60
m

H
t

0

0.5

1

1.5

2

<φ
∗ φ>

m
H

t
Q

=0

m
H

t
Q

=9

m
H

t
Q

=18

m
H

t
Q

=36

m
H

t
Q

=72

0 20 40 60
m

H
t

0

0.5

1

1.5

2

<φ
∗ φ>

m
H

t
Q

=0

m
H

t
Q

=9

m
H

t
Q

=18

m
H

t
Q

=36

Figure 1: The normalized Higgs expectation value 2〈φ2〉/v2 vs time, for different quench times

(full lines). Dotted lines show v2(t)/v2 correspondingly colour coded. Left: mH = 2mW , right:

mH =
√

2mW .

field ‘overshoots’ the minimum of its potential, rolls back and moves again towards zero,

and when φ2 goes through its first minimum, new zeros in the Higgs length occur, enabling

the creation of new half-knots. In this way second, third, . . . , generation half-knots were

observed [24] near the minima of the oscillating φ2. Since the gauge field is initially very

small, CP violation is ineffective in influencing the creation or annihilation of the first

generation half-knots. However, by the time of the first minimum of φ2, the gauge field has

grown substantially, CP violation can be effective and may change the balance and cause

an asymmetry in 〈Ncs〉. Because of the importance of Higgs zeros, we shall in section 4.4

present results for the distribution of the local Higgs field length, a simple histogram of

φ†(x)φ(x) for various quench times.

We found in [1] that the asymmetry depends strongly on the Higgs mass. In addition to

the quench time dependence, we are interested in how this mass dependence comes about.

To maximise the numerical signal, we choose the Higgs masses where the asymmetry is

largest, which seems to be mH = 2mW ' 161 GeV and mH =
√

2 mW ' 114 GeV.3 Below,

we will show plots for these two Higgs masses in parallel, to demonstrate the differences

throughout. Since the physical Higgs masses, at least in the Minimal Standard Model are

constrained to be within 114 and 200 GeV [8], both options are (marginally) allowed.

3.1 Higgs field

As the Higgs mass parameter changes from positive to negative, the naive Higgs expectation

value goes from 0 for t < tQ/2, to v2(t) = −µ2
eff(t)/λ up until t = tQ, after which it stays

at v2 = µ2/λ.

Figure 1 shows the evolution of the normalized Higgs average value 〈2φ2〉/v2 (cf. (3.1))

for various quench times. Dotted lines show v2(t)/v2 for the different tQ. For small quench

times, the symmetry breaking time is determined by the time it takes for the dynamics to

perform the rolling off the local maximum of the potential at φ = 0. For mHtQ < 36, v2(t)

reaches v2 before 〈2φ2(t)〉 reaches v2(t). For larger quench times, 〈2φ2(t)〉 catches up with

3In 1+1 dimensions the mass dependence is complicated [22], which could also be the case here.
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Figure 2: The evolution of the magnetic field B2 for different tQ. mH = 2 mW (left), mH =
√

2 mW

(right).

v2(t), and oscillates around it before settling around v2. In the limit of infinite quench time

one would expect it to follow v2(t) closely, except for finite-temperature corrections.

We notice that the amplitudes of the first maximum and minimum are quench-time

dependent, and also mass dependent. Although the qualitative behaviour is the same,

mH =
√

2mW leads to a lower first Higgs minimum.

The evolution of the Higgs field determines the energy loss in (the first half of) eq. (2.16)

due to the time-dependent effective mass. We integrate the actual numerical 〈φ2〉 up to

time tQ to find that for tQ = (0, 9, 13.5, 18, 36, 72) eq. (2.16) predicts

|∆ρ/ρinitial| ' 0, 0.06, 0.10, 0.19, 0.66, 0.84. (3.6)

By directly calculating the energy, we find

|∆ρ/ρinitial| ' 0, 0.04, 0.08, 0.17, 0.67, 0.83. (3.7)

Note that for the very slowest quenches, more than half the energy is lost. For these

slow quenches, at t = tQ the field has already started its oscillation, and so the Gaussian

approximation (the second half of eq. (2.16)) does not apply. Integrating the actual field

evolution reproduces the energy depletion.

3.2 Magnetic field

As the Higgs field goes through its transition, energy is transfered to the gauge fields, the

occupation numbers of which grow exponentially [25]. The gauge fields acquire energy very

fast at first, and then slowly towards what will be an equipartitioned and thermalised final

state, figure 2. This later transfer is quench-time dependent, faster quenches lead to a faster

transfer of energy. To some extent, this decrease in energy transfer is due to the depletion

of energy resulting from the time-dependent µeff , and the relative growth Ḃ2/B2 is in fact

similar for different quench times. The dependence on the Higgs mass is also interesting.

For mH =
√

2 mW the transfer seems to be driven by the Higgs field oscillations, with the

gauge field also oscillating even for rather late times. In particular the second maximum

is much larger than for mH = 2mW .
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Figure 3: 〈N2
cs
〉 for different quench times. mH = 2 mW (left), mH =

√
2mW (right).

3.3 Chern-Simons diffusion

In the absence of CP-violation, the ensemble average of the Chern-Simons number itself is

zero, Chern-Simons number being CP-odd. In our setup, the ensemble is strictly CP-even,

so 〈Ncs〉 is also strictly zero.

We can also calculate the evolution of the width of the Ncs distribution, which will grow

as a result of the preheating of the gauge fields, similar to the B-field. But also because of

fluctuations at finite temperature (and out of equilibrium, at finite energy density) there

is a non-zero diffusion rate of Chern-Simons number, Γ(t) = d∆cs/dt (cf. (3.4)). The rate

Γ(t) enters in an estimate of the baryon asymmetry in section 4.

Figure 3 shows the evolution of ∆cs for various quench times. There is a rapid growth,

which in some cases appears to be further driven by the Higgs field oscillations. Eventu-

ally ∆cs settles, in accordance with the fact that at the final emerging temperatures the

equilibrium sphaleron rate is negligible. This is one of the central features of Cold Elec-

troweak Baryogenesis, the generated asymmetry does not get further diluted by sphaleron

transitions. Similar to the magnetic field, at least for mH =
√

2mW , the Chern-Simons

number seems to be driven by the Higgs oscillations. However, whereas the growth of the

magnetic field has a monotonic dependence on the quench rate, the diffusion rate appears

to have a more complicated dependence.

4. Adding CP-violation

For small enough values of the CP-violation parameter δcp, it was seen in [1] that the baryon

asymmetry is linear. The value of δcp required to reproduce the observed asymmetry, is

comfortably within this linear range. We shall keep δcp = 1 throughout, the upper end of

the range studied in [1], in order to maximise the generated numerical signal.

Because the CP-violation is small, we have the option to treat it as a perturbation

on the CP-even background described in the previous section. Although we will include

the CP-violating term completely in the dynamics below, we will first apply the early time

approximations introduced in [26, 3, 13, 14] for the case of finite-time quenches.
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mHtQ = 0 (left) and 36 (right). Notice the logarithmic axis.

4.1 Initial rise

For very early times, only very long wavelength modes have large occupation numbers,

both in the Higgs and gauge fields, since modes only gradually become unstable, starting

with the zero mode at time tQ/2. Treating the CP-violation as a perturbation to the

CP-even evolution, and making a homogeneous approximation, we find for the average

Chern-Simons number [22]

〈Ncs〉 =

√
2 δcp(LmH)3

64π4(1 + c)2
〈B2〉
m4

H

〈φ2〉
v2/2

. (4.1)

The values of B2(t) and φ2(t) are taken from the simulations, section 3. The constant c

is extracted from the growth of the gauge field B2(t) ∝ e2ct. The linearisation assumes

exponential growth of the Higgs and gauge fields. This description will have to break

down at some fairly early time, when the back-reaction of gauge and Higgs non-linear self-

interaction becomes important. Figure 4 shows the linear approximation compared to the

full simulation for short and long quench times. The agreement is good during the initial

exponential growth, but breaks down after about 5 and 10 units of mHt after µ2
eff has gone

negative at t = tQ/2, respectively for tQ = 0 and 36.

4.2 Thermodynamic treatment

Beyond the linear approximation, we can apply methods from non-equilibrium thermody-

namics [26, 3, 13, 14] to estimate the asymmetry.

One can interpret the CP-violating term as a chemical potential for Chern-Simons

number4 (cf. (2.1), (2.6)):

∫

d4xκφ†φTr FF̃ ↔ −
∫

dt µchNcs, µch(t) =
3δcp

m2
W

d

dt
〈φ2(t)〉. (4.2)

4Notice that one treats φ†φ as an space-independent chemical potential.
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Figure 5: The average Chern-Simons number in the full simulations (full line) and from the

thermodynamic treatment (dashed line). Teff is chosen in each case to fit the height of the first

maximum. mH = 2 mW (left),
√

2 mW (right).
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Figure 6: The effective temperature in units of mH as extracted from comparing the full simulation

to the thermodynamical treatment, as shown in figure 5. Squares: mH = 2 mW , circles: mH =√
2mW .

Using the CP-even evolution of the diffusion rate eq. (3.5) and the Higgs average eq. (3.1),

the average Chern-Simons number can then be estimated through

〈Ncs〉(t) =
1

Teff

∫ t

0
dt′ Γ(t′)µch(t′), (4.3)

where Teff was interpreted in [3] as the effective temperature of the tachyonic modes. We

will not elaborate here on such an interpretation, but merely observe that Teff turns out

to decrease roughly linearly with tQ, and that mH =
√

2 mW gives much larger values,

figure 6.

Figure 5 compares the result of eq. (4.3) to the full simulation. Teff is chosen to fit the

first maximum of the full simulation. The approximation nicely reproduces the change of

sign of the asymmetry produced by the back-reaction. At later times, the approximation

again breaks down. We will see that this is precisely the time when the Higgs field acquires
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Figure 7: The evolution of Chern-Simons number in time, mH = 2 mW (left), mH =
√

2 mW

(right).

a net winding number [1], the dynamics of which can apparently not be described by a

simple chemical potential with constant Teff . The effective temperatures as a function of

tQ are shown in figure 6.

Notice in figure 5 that the sign of the asymmetry at later times mHt ∼ 40 has changed

again to positive (the sign of δcp) in the case of mass ratio
√

2, which is not captured by

the thermodynamic treatment. This tells us that there is more to the dynamics than the

correlation between the global observables µch(t) and Γ(t). Even so, this correlation is an

essential feature of the early evolution, since just replacing the diffusion rate by its time

average [13]

∫ tmax

0
dt′Γ(t′)µch(t′) → Γ̄

∫ tmax

0
dt′µch(t′) =

3δcpΓ̄v2

2m2
W

, (4.4)

gives a sign of the asymmetry that is definitely equal to that of δcp, opposite the generic

early time evolution, and not reflecting the sensitive parameter dependence of the final

asymmetry.

4.3 Full simulation

In order to capture the full dependence on quench time and Higgs mass, we need to include

the CP-violation completely in the dynamics. Figure 7 shows the average Chern-Simons

number for various quench times. Figure 8 is the corresponding winding number. We notice

that the mass dependence found in [1] is robust, and not a pathology of an instantaneous

quench. For mH = 2mW , the fastest quenches mHtQ = 0, 9 lead to an asymmetry of

opposite sign to δcp. For slower quenches, the noise dominates and we can only conclude

that the final asymmetriy is consistent with zero. In contrast, for mH =
√

2mW , the

asymmetry has the same sign as δcp, and it is maximal for intermediate quench times

mH tQ = 18. Recall also the maximal boosting of ∆cs in section 3 was seen at these quench

times. In both cases, for mHtQ = 36 and larger the asymmetry appears to vanish. This is

all compiled in figure 9 which shows the final asymmetry versus quench time.
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Figure 9: Final asymmetry vs. quench time for mH = 2 mW (squares) and
√

2mW (circles).

4.4 Higgs field zeros

We have observed in earlier work [14, 24] that the final asymmetry in 〈Ncs〉 can already be

seen at earlier times in 〈Nw〉, which may be expected from the fact that the temperature

after the transition is low enough that sphaleron transitions are suppressed and the robust-

ness of winding number under relatively small changes in the fields. The asymmetry in

〈Nw〉 is induced by the CP violating terms in the equations of motion, which are very small

during the first stages of the instability, as monitored roughly by φ2 and B2. Somewhat

later the asymmetry becomes visible in the initial rise and bouncing back of 〈Ncs〉, and a

little later also in 〈Nw〉. The rise in 〈Nw〉 is much smaller than in 〈Ncs〉, presumably since

Nw can only change when there are zeros in the Higgs field, which are exceptional by that

time. Still somewhat later, around the time 〈φ2〉 has its first minimum, 〈Nw〉 has grown

substantially, as new (second generation) zeros appear in the Higgs field.

This is illustrated in figure 10, which shows the evolution of 〈Ncs〉, 〈Nw〉 and 〈φ2〉 at
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2 mW , dashed mH = 2 mW . The quench time mHtQ = 9. The inset is a further

amplification around the initial winding number bump.

early times. At the time of the initial bump of 〈Ncs〉 the winding asymmetry 〈Nw〉 is still

not visible, but a growth of a ‘bump’ is discernible by the time 〈Ncs〉 has crossed zero

and reached a negative maximum. When 〈φ2〉 reaches its first minimum the asymmetry in

〈Nw〉 grows much faster, which we interpret as being caused by the asymmetric creation

of second generation winding centers, made possible by zeros in the Higgs lengths.

To illustrate the presence or absence of zeros in the Higgs field we show histograms of

φ2(x) over the lattice for the first 4 minima of the Higgs oscillation, in figures 11 and 12.

Figure 11 is for mH = 2mW , and we see that although the average is away from zero

(figure 1), there is still a tail stretching to zero, at least for the first two minima. These

will provide nucleation points for winding. In figure 1, we also saw that for the smaller Higgs

mass mH =
√

2 mW , the Higgs minima were somewhat lower. It is remarkable, however

how different the distributions in the first minimum look (figure 12). The proximity of

the distribution bulk to zero (and the fact that φ2(x) ≥ 0) results in points aggregating

close to zero. Qualitatively, the density of zeros follows the same behaviour as a function

of quench time as the final asymmetry of figure 9.

The situation may have been different, had we included the inflaton dynamically.

In [27], it was seen that at the end of hybrid inflation, local symmetry restoration can

occur in the inflaton-Higgs-gauge system, where the inflaton can oscillate back beyond the

symmetry breaking value. This could significantly affect the number of Higgs zeros present.

On the other hand, similar simulations within the scenario studied here [13] suggest that

with parameter choices realistic to electroweak physics, the amplitude of oscillation of the

Higgs is not significantly altered by the presence of a dynamical inflaton.
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Figure 11: Histogram of φ2(x) over the lattice for mH = 2 mW . Colours correspond to quench

times mHtQ = 0 (black), 9 (red), 18 (green) and 36 (blue). The four graphs correspond to the first

four minima of the Higgs oscillation in each case.
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4.5 Kibble mechanism

During a symmetry breaking transition, a net density of defects will form through the
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Figure 13: The final distribution of winding number for various tQ. mH = 2 mW .

Kibble mechanism [28]. In the present case of O(4) symmetry in 3+1 dimensions, these

textures have integer winding number in the Higgs field, spread out over space. The density

of gauged defects can be predicted in terms of the evolution of the correlation length of the

system [29]. Numerical studies often consider thermal quenches with overdamped dynamics

through the transition. In our case, we have an underdamped system with no explicit

coupling to a thermal bath (higher-momentum modes do play the role of a bath). Still, we

here illustrate “fast” and “slow” quenches in terms of the number of defects generated.

Figure 13 shows the distribution of final winding number over the ensemble. There

is a qualitative difference between mHtQ = 0, 9, 18 and mHtQ = 36, 72. Also from this

distribution we see that mHtQ = 18 still belongs to the regime of ‘fast’ quenches, whereas

mH tQ = 36 is definitely in the ‘slow’ regime.

5. Conclusions

We have confirmed in a more realistic setting that including CP-violation in the SU(2)-

Higgs equations leads to baryogenesis, when going through a tachyonic electroweak transi-

tion. The dependence on quench time is significant. Although our scan of quench time is

not fine enough to give a precise characterisation of ‘fast’ and ‘slow’ quenches, we can say

that mH tQ . 20 belongs to the first category, corresponding to

|u| =

∣

∣

∣

∣

dµ2
eff(t)

2µ3dt

∣

∣

∣

∣

t=tQ/2

& 0.07. (5.1)

This constrains a possible underlying Hybrid inflation model in terms of the Higgs-inflaton

coupling λσφ, since µ2
eff(t) = µ2 − λσφσ2.

It is satisfying that the dramatic mass dependence seen in [1] is not a result of the

instantaneous quench. It is, however, surprising that for mH =
√

2mW the maximum
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asymmetry is not generated at the fastest quenches but for intermediate tQ. Both the mass

dependence and the quench time dependence can be put down to a coincidence of phases

and frequencies of the Higgs and gauge oscillations. This is similar to the much simpler

model in 1+1 dimensions studied in [22]. Because of this dependence it may be important

to include U(1) gauge fields, a dynamical inflaton, and perhaps dynamical fermions.

An important aspect of the transition is the occurrence of zeros in the Higgs field.

CP-violation generates asymmetries in the Chern-Simons number density, which prompts

the winding number density to move along as well. The full winding number change is

however only realised once the second generation Higgs zeros appear. Although some

settling of winding and Chern-Simons number can occur at later generations, we find that

the asymmetry is established at the first Higgs minimum.

The quench time and the mass (through the Higgs self-coupling) influence the number

of zeros, and so determine the magnitude of the asymmetry by allowing more half-knots

to flip their winding number. The detailed dynamics are very complicated.

The expansion of the Universe is negligible at electroweak-scale temperatures, but

reheating may proceed differently in the presence of all the other Standard Model fields

and in particular an oscillating inflaton [23]. Still, because the final asymmetry is largely

determined during the first couple of Higgs oscillations, we expect that the results presented

here are reasonably close to the complete result.

The maximal asymmetry occurred in our simulation for mH =
√

2 mW and mHtQ = 18.

We can estimate the photon density by distributing the initial energy density over the

Standard Model degrees of freedom,5 which gives:

nB

nγ
= (0.20 ± 0.04) × 10−3 δcp. (5.2)

about three times6 the result at zero quench time [1]. This means that we require δcp =

3 × 10−6 or larger to reproduce the observed baryon asymmetry.
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